INDIAN SCHOOL MUSCAT

NAME OF THE EXAMINATION	FIRST PERIODIC TEST	CLASS: XI
DATE OF EXAMINATION	11 - 09 - 2022	SUBJECT: PHYSICS
TYPE	MARKING SCHEME	SET A

SET-B	Q.NO	VALUE POINTS	MARK
	1.	(i) A (ii) B (iii) A (iv) C	4 x 1 = 4
	2.	(i) M ⁰ L ¹ T ⁻¹ (ii)) M ⁰ L ¹ T ⁻²	1/2 + 1/2
		(ii) (a) 1 (b) 3	1/2 + 1/2
	3	Dimensionally prove that $1J = 10^7 \text{erg}$	
		$n_2 = n_1 \left[\frac{M_2}{M_1}\right]^a \left[\frac{L_2}{L_1}\right]^2 \cdot \left[\frac{T_2}{T_1}\right]^{-2}$	
		$n_2 = n_1 \left[\frac{kg}{g}\right]^a \left[\frac{m}{cm}\right]^2 \cdot \left[\frac{s}{s}\right]^{-2}$ 1M	
		Rest of calculation up to final result 1M	
	4.	Any four advantages of SI over other systems of units	4 X ½ =2
	5.	(a) $M^0L^1T^{-2}$ (b) $M^1L^{-1}T^{-2}$ (c) $M^1L^2T^{-2}$ (d) $M^1L^1T^{-1}$	4 x ½ =2
		If not Derived from formula or unit deduct 1 mark	
	6.	(i) Acceleration versus time graph	1
		(ii) Velocity versus time graph	1
	7.	(a) Graphical derivation of $S = ut + 1/2at^2$	1/2
		GRAPH	1
		DERIVATION	
		If in introduction the following statement is missing deduct ½ marks	
		"A body is moving with uniform acceleration"	1
		(b) $v^2-u^2=2as$ $0^2-35^2=2a(200)$	1/2
		$a=-3.0625 \text{m/s}^2$	
		v=u+at 0=35-3.06t	
		t=11.4s	
	8.	$\mathbf{M} = \mathbf{k} \mathbf{V}^{\mathbf{a}} \mathbf{d}^{\mathbf{b}} \mathbf{g}^{\mathbf{c}}$	
		$[M'] = k[L^{1}T^{-1}]^{a} [ML^{-3}]^{b} [L^{1}T^{-2}]^{c}$ 1M	

b = 1, a - 3b + c = 0
$\Rightarrow a + c = 3(1)$
and $-a - 2c = 0(2)$
on solving:-
c = -3 and $a = 6$ (½ M each for a, b & c)
$\mathbf{M} = \mathbf{k} \frac{\mathbf{V}^{6} \mathbf{d}}{\mathbf{g}^{3}}$